
DOI: 10.1007/s10955-004-2022-0
Journal of Statistical Physics, Vol. 118, Nos. 5/6, March 2005 (© 2005)

Infinite Compressibility States in the Hierarchical
Reference Theory of Fluids. II. Numerical Evidence
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Continuing our investigation into the Hierarchical Reference Theory of flu-
ids for thermodynamic states of infinite isothermal compressibility κT we now
turn to the available numerical evidence to elucidate the character of the par-
tial differential equation: Of the three scenarios identified previously, only the
assumption of the equations turning stiff when building up the divergence
of κT allows for a satisfactory interpretation of the data. In addition to the
asymptotic regime where the arguments of part I directly apply, a similar mech-
anism is identified that gives rise to transient stiffness at intermediate cutoff for
low enough temperature. Heuristic arguments point to a connection between
the form of the Fourier transform of the perturbational part of the interaction
potential and the cutoff where finite difference approximations of the differ-
ential equation cease to be applicable, and they highlight the rather special
standing of the hard-core Yukawa potential as regards the severity of the com-
putational difficulties.

KEY WORDS: Liquid-vapor transitions; non-linear partial differential equa-
tions; numerical analysis; finite differences; stiffness.

1. INTRODUCTION

Building upon the results of part I(1), q. v., and maintaining the notational
and semantic conventions introduced there, we now turn to the numerical
solution of the HRT PDE(2–8)
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in order to determine the type of behavior that actually occurs in practical
applications of the theory for thermodynamic states of diverging isother-
mal compressibility κT . To this end, we consider two simple model poten-
tials v(r)=vhs(r)+w(r), viz., the hard-core Yukawa (HCY) system,

whcy(r)=
{ −ε0 : r <σ

−ε σ
r
e−z (r−σ) : r >σ,

(2)

and square wells (SWs),

wsw(r)=
{−ε : r <λσ

0 : r >λσ, (3)

to illustrate the types of behavior encountered and to test the predictions
furnished by the relevant scenarios. In both of these potentials ε coincides
with the negative of the contact value of the interaction, limr→σ+ (−w(r)),
and so sets the energy scale of the problem. The potential range is given
by 1/z and λσ , respectively. Unless stated otherwise, ε0, the value of
whcy(r) inside the core, coincides with ε, a choice shared with the imple-
mentation by the authors of HRT and their coworkers referred to as the
original one in refs. 9 and 10, q. v. A short summary of the parameter sets
and sample isotherms considered in this study can be found in Table I. In
the numerical work we employ an unconditionally stable implicit predic-
tor-corrector scheme shortly characterized in Section 3.1. A more exten-
sive discussion of the implementation can be found in refs. 9 and 10,
where default settings for the most important customization parameters
are also documented. Even further technical information is available with
the source distribution itself.(11)

Of the three types of behavior compatible with the local properties
of the PDE, both genuine (r = s = 0) and effective (r > 0, s = r + 1> 1,

Table I. Overview of Systems and Sample Isotherms

System βc ε ρc σ
3 β ε ρv σ

3 ρl σ
3

SW, λ=3 0.1011 0.26(1) 0.115 0.075(5) 0.510(5)
HCY, z=1.8/σ 0.8316 0.33(1) 0.875 0.145(5) 0.525(5)

βc and ρc give the location of the critical point, ρv and ρl the extent of
the two-phase region at the inverse temperature β considered in the tables
and figures to follow. The numbers have been obtained from HRT calcula-
tions not imposing the core condition. All of the digits indicated for βc are
significant.
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reff = seff = 0) smoothness imply a FD approximation to f growing like
1/Q. The monotonous scenario, on the other hand, furnishes the specific
prediction that ε̄ Q2 tends to a finite limit for Q→ 0. As we will see in
Section 2, the numerical evidence clearly rules out this possibility.

It is thus only the genuinely smooth and the stiff scenarios that remain to
be considered in Section 3. The results of the computations reported there do,
indeed, allow us to infer the character of the PDE for subcritical temperatures,
T <Tc, with great confidence, if only indirectly due to the great computational
similarity of genuine and effective smoothness. Our main evidence in favor of
the stiff scenario derives from the rather detailed and testable predictions it
entails, all of which are confirmed numerically. By way of contrast, the genu-
inely smooth scenario does not hold an explanation for the observed trends,
especially as regards the dependence of the FD results on the properties of the
discretization grids.

Our conclusion that the PDE actually turns stiff in part of D for T �Tc
then paves the way for some heuristic arguments relating the onset of smooth-
ing inQ to the form of the Fourier transform of the perturbational part of the
potential (Section 4). So having understood the behavior of the PDE in the
limit Q→ 0 where asymptotic reasoning valid for large ε̄ applies, in Section 5
we then turn to similar computationally problematic features of its solution at
much higher cutoff where the numerical evidence points to a mechanism not
unlike that at work in the asymptotic region. We close with an informal discus-
sion of the reasons for the atypical computational properties of HCY fluids of
moderate inverse screening length z (Section 6).

2. THE MONOTONICITY ASSUMPTION REFUTED

According to Section V of part I(1), the assumption of a merely log-
arithmic divergence of f furnishes the rather specific prediction of ε̄ Q2

tending to a finite limit for Q→ 0. Of course, the possibility of non-zero
s means that, in principle, the smoothing effect discussed in Section VI of
part I(1) must be reckoned with. The singularity being so mild, however, a
possible reduction of s >0 to an effective value of seff =0 is preempted by
the choice of step sizes 	Q:

In our implementation of the theory the cutoff in the ith FD step is
parameterized as

Q(i)= ln
(
ea−i b+1

)/
σ, i=0,1, . . . , (4)

as is the case for the program the original authors of HRT and their
coworkers employ, too. Here a/σ is close to the cutoff Q(0)≡Q∞ where
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initial conditions are imposed on f , and b/σ is the spacing 	Q
∣∣∞ of suc-

cessive cutoffs in the large Q limit. For Q→0, on the other hand, we eas-
ily find 	Q≈−Q(1− e−b). If ε̄ Q2 is to approach zero or a finite constant
as predicted by the assumption of monotonous growth these step sizes
thus turn out of order O(ε̄−1/2) at most, and our discretization should
allow us to follow the variation of f reasonably well all the way to Q=0.
From Fig. 1, however, we see that ε̄ Q2 clearly diverges for Q→ 0. As
this finding is corroborated by further calculations with a smaller setting
of the numerical parameter 	Q

∣∣∞, on finer density grids (down to 	ρ=
5 ·10−4/σ 3), and for both hard-core Yukawa and square well potentials we
feel we can safely exclude the monotonous growth scenario from further
consideration.

3. SMOOTHNESS VERSUS STIFFNESS

As for the remaining two alternatives, an attempt to distinguish
numerically between genuine and effective smoothness seems doomed at
first sight: both predict a numerically smooth solution growing like 1/Q
and with a profile like that sketched in Fig. 1 of part I(1). And indeed,
Fig. 2 shows the small Q behavior of f within the binodal as obtained
numerically to be in excellent agreement with f ∝ 1/Q, and Figs. 2, 3,
and 5 as well as the numerical data demonstrate that f is of the form
necessary for a stable pattern of growth, as postulated in part I(1), q. v.
But even though these general features fit both scenarios, close scrutiny
of the computational process and the numerical results yields a wealth of
indirect evidence that we feel is sufficient to establish the stiffness of the

Fig. 1. ε̄ Q2 as a function of Q for various densities inside the binodal. The data have been
obtained for a hard-core Yukawa potential with inverse screening length z= 1.8/σ and for
an inverse temperature of β= 0.875/ε. The numerical precision in the calculations was ε# =
10−2, the step size for infinite cutoff was 	Q

∣∣∞ =10−2/σ .
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PDE for T <Tc with great confidence, if not with absolute certainty. We
base our reasoning on the rather specific, and numerically testable predic-
tions that follow from the assumption of stiffness. These stand in marked
contrast to the vague expectations furnished by the genuinely smooth sce-
nario that can, however, never be ruled out completely as smoothness is
its sole defining characteristic. As we will show in this section, it is the
assumption of a stiff PDE that is in full accordance with the numerical
findings whereas smoothness is only marginally compatible with some of
their traits, especially as regards the SW data.

Before, however, some general remarks are in place: Letting the labels
x and y refer to either Q or ρ, in the stiff scenario smoothing in x sets
in at Q=Q	x and can always be postponed, i.e., shifted to lower cutoffs
by decreasing the step size 	x. If, however, the corresponding exponent,
r or s, is positive, the rapid growth of f , ε̄ and |∂2f/∂x2| as the solu-
tion proceeds towards Q= 0 implies that the amount by which Q	x can
be changed in this way and the attendant computational effects must be
small. For positive exponents the Q	x are thus fairly well defined despite
the gradual nature of the transition to the smoothing regime. – Further-
more, without loss of generality assuming Q	x >Q	y , Q	x is obviously
independent of the step sizes 	y. The solution obtained numerically at
cutoffs below Qsmooth ≡Q	x is already affected by smoothing in x so that
there is no point in identifying Q	y with the cutoff where 	y becomes
too large to describe the variation of the no longer accessible true solution
of the PDE. Instead, Q	y is taken to be the cutoff where smoothing in y
commences in the solution of the FD equations (FDEs), which implies a
	x dependence of Q	y and may even induce Q	y to vanish altogether.
For Q<Q	y , the solution generated numerically by necessity conforms
to the smooth scenario as reff = seff = 0 and so grows like 1/Q in a sta-
ble manner. This proportionality also means that the form of f remains
constant from Q	y all the way to the final results at zero cutoff. (Here
and below the form of f at some cutoff Q refers to f (Q,ρ) as a func-
tion of ρ, restricted to ρ1<ρ<ρ2 and without regard for the overall nor-
malization of f .) – The important mechanism sketched in Section III of
part I(1) and the concomitant stabilization of form and monotonicity of
f do not explicitly depend on s and thus always set in at Q	ρ ; inciden-
tally, Figs. 2 and 3 show its preconditions, viz., flatness and compatibility
with the sketch of part I(1) to be met numerically. Of course, both Q	Q

and Q	ρ depend on temperature and density, which is taken to be silently
accounted for whenever we speak of the form of f at one of the Q	x , and
they are defined only in that part of D where f is large. – Not surpris-
ingly, the two possible orderings for the cutoffs Q	Q and Q	ρ assigned
in an interpretation of the numerical results in terms of the stiff scenario
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entail vastly different consequences and are therefore discussed separately
in subsections 3.2 (Q	ρ >Q	Q) and 3.3 (Q	Q>Q	ρ) below.

Before that, however, it is worthwhile to step back for a moment and
ask why we have to adopt Eq. (1) in the first place if the most direct for-
mulation of the theory is that of a PDE for the free energy A(Q)(ρ) of the
Q system at density ρ, cf. part I(1). Indeed, from Eqs. (A2) and (A3) of
part I(1) we see that ∂A(Q)/∂Q∝Q2 (f + const) for Qσ � 1 so that the
Q and ρ scales characteristic of A(Q)(ρ) are essentially the same as for
f (Q,ρ). In the smooth scenario there is then no reason for the formu-
lation in terms of f to be preferable to that in terms of the free energy,
provided proper care is taken to ensure stability and convergence. This
has certainly been the case in our earlier work shortly summarized in
appendix B.1 of ref. 10 that nevertheless was unable to proceed to small Q
for T <Tc. Similar difficulties are reported in ref. 6, and to the best of our
knowledge there are no HRT results on simple one-component fluids for
T <Tc except in the quasilinear formulation of Eq. (1) or variants thereof.
– In the stiff scenario all this is, of course, to be expected as the rapid low
amplitude oscillations of the solution in this case necessitate step sizes that
are reduced as some inverse power of ε̄ or the exponential of ∂A(Q)/∂Q,
and only under special circumstances do the discretized equations allow
one to obtain a solution with the much larger step sizes used in practi-
cal applications. As noted in Section II of part I(1), the auxiliary quantity
f (Q,ρ) was introduced exactly for this reason.(8)

3.1. Numerical Aspects

As some of the numerical effects are rather subtle, we should also
recall several key aspects of the implementation we rely on. This is a
highly flexible and fully modular computational framework for the solu-
tion of a FD approximation of the PDE by an implicit predictor-correc-
tor scheme thoroughly discussed in refs. 9 and 10. For consistency with
part I,(1) in the calculations reported here we refrain from implementing
the core condition. The discretization is applied on uniform density grids
and with the predetermined step sizes 	Q of Section 2. Convergence of
the FD equations has been checked, and iteration of the corrector step
does not bring about noticeable changes.

In practical applications, the discretized equations generally cannot
be solved down to arbitrarily small Q for T <Tc, and the smallest cutoff
reached we denote Qmin. As the failure modes responsible for an end of
the program are known(9,10) and can be linked to the local behavior of the
solution, v. i., the systematic changes in Qmin upon variation of aspects
of the numerical procedure provide a powerful and readily accessible
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diagnostic tool. For the calculations reported here, the immediate cause
for abortion of the computation at some cutoff Qmin is either an insuffi-
cient adaptation of the rescaling necessary for representing quantities
affected by exponentiation of f – the scale of Fig. 1 alone shows that, e.g.,
ε̄ cannot be represented in double precision – or else because of non-real
f and negative ε≡ ε̄+1 in the predictor step. These two effects are linked
to rapid increase and decrease of f , respectively.

Unlike the Q	x , Qmin obviously does not depend on the density.
Instead, it is essentially determined by the physical potential w(r), the
temperature, the discretization grid, and the formulation of the theory.(9)

As for the latter, if the PDE is coupled to further constraints, and the
solution vector augmented by additional components to be determined
accordingly, the likelihood of an early termination of the computation in
the predictor step generally increases, and so does Qmin. As the custom-
ary manner of implementing the core condition involves an expansion of
the direct correlation function inside the core,(6,9) the sensitivity of Qmin
to an increase in Ncc, the number of expansion coefficients, again proves
of interest.

For a more detailed account we refer the reader to refs. 9 and 10 as
well as the documentation that comes with the source code distribution
itself.(11)

3.2. Smoothing in ρ First

So let us first turn to the HCY fluid of inverse screening length z=
1.8/σ already considered in ref. 9. As mentioned before, the numerical
solution must be smooth at any rate and is therefore always compatible
with the genuinely smooth scenario. In this case, we expect only a small
dependence of the results on 	Q and 	ρ that should be essentially sto-
chastic in nature, stemming from the truncation error in an otherwise un-
problematic FD approximation of the PDE alone.

As we shall see in a moment, the numerics can also be reconciled with
the stiff scenario if only we assume smoothing to occur in the ρ direc-
tion first, Q	ρ >Q	Q, furnishing the following predictions: The mecha-
nism responsible for stable growth of f (cf. Section III of part I(1)) being
at work at all cutoffs below Qsmooth, the stability of the computational
process is not an issue and incorporation of the core condition is entirely
unproblematic. An overflow due to an insufficient adaptation of the re-
scaling of non-O(1) quantities is the only possibility for numerical failure,
and its likelihood is greatly reduced when 	Q is decreased so that smaller
step sizes are generally accompanied by smaller values of Qmin. A system-
atic 	ρ dependence of Qmin is not anticipated. – For fixed density grid,
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Q	ρ ≡Qsmooth cannot depend on 	Q, nor can f at Q	ρ . On the other
hand, even though smaller step sizes, i. e., smaller 	Q

∣∣∞, cf. Section 2,
correspond to smaller Q	Q, s > 1 implies that the drop in Q	Q must be
exceedingly small. As furthermore the evolution from Q	ρ down to Q	Q

is determined by the solution at the onset of smoothing and the proper-
ties of only the density grid, the form of f below Q	Q, including Q=0, is
virtually 	Q independent. – As for a variation of the density grid at fixed
	Q, a reduction of 	ρ clearly entails a shift of Qsmooth ≡Q	ρ to smaller
cutoffs, which may in turn cause a change in Q	Q, too. These effects must
be rather small because of the non-zero exponents r and s, and they must
vary with the density for the same reason the Q	x are density dependent.
A change of the ρ grid thus implies a small change of the form of f at
Q	ρ and, hence, at Q	Q and all smaller cutoffs. As long as Q	ρ does
not fall below Q	Q, however, the ratio of the forms of f as obtained on
different density grids cannot depend on 	Q.

All these predictions are confirmed in the actual calculations for a
HCY potential with z= 1.8/σ on density grids with 	ρ = 10−2/σ 3 and
	ρ = 5 · 10−4/σ 3 and varying 	Q as summarized in Tables II–IV and
Fig. 2. For fixed density grid (Tables II and III, respectively), Qmin and,
hence, the final values of f markedly depend on 	Q, the former generally
decreasing and the latter increasing upon reduction of the step size. On the
other hand, both the form of f and its magnitude at fixed cutoff – to be
found in the tables under the headings of Fyx and fx Qmin σ , respectively
– remain largely unchanged. Comparing the results obtained with differ-

Fig. 2. f as a function of Q for various densities inside the binodal. The data have been
obtained for the same hard-core Yukawa potential and with the same numerical parameters
as in Fig. 1. The dashed line indicates the slope corresponding to proportionality of f to the
reciprocal of the cutoff. Subsequent symbols are separated by 10 steps in the −Q direction.
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ent settings for 	ρ, the change in the final values of f is indeed almost
completely due to the differences in Qmin. The magnitude at fixed Q, on
the other hand, is affected only moderately, viz., by a few per cent for a
20-fold increase in the density resolution, and it depends on ρ but not on
	Q, cf. Table IV. Qmin itself is not affected by the density grid in a sys-
tematic way. There are two sample isotherms, viz., the ones at 	Q

∣∣∞ =
0.003/σ 3, 	ρ= 10−2/σ 3 and at 	Q

∣∣∞ = 0.004/σ 3, 	ρ= 5 · 10−4/σ 3, that
founder at comparatively large cutoff. Of these, only the former does not
enter the asymptotic regime where f ∝ 1/Q, as can clearly be seen from
Table IV. All in all, the numerical results are in excellent agreement with
stiffness, and we note that for this system and the density grids considered
Q	Q must be sought around 10−2/σ . Trivially, being smooth the results
also conform to the smooth scenario as mentioned before.

3.3. Smoothing in Q First

In our previous work on HRT(9,12) we repeatedly stressed the vastly
different numerical properties of the HCY and SW potentials. This is
certainly not anticipated for genuine smoothness that merely predicts a

Table II. �Q Dependence of the Final Results for a Hard-Core Yukawa System

	Q
∣∣∞ σ Qmin σ f0.2 f0.2Qmin σ F 0.3

0.2 F 0.4
0.2 F 0.5

0.2

0.003 9.914 ·10−3 3.643 ·102 3.612 1.862 1.755 0.590
0.004 3.995 ·10−5 8.990 ·104 3.592 1.867 1.758 0.585
0.005 5.014 ·10−5 7.163 ·104 3.592 1.867 1.758 0.585
0.010 9.943 ·10−5 3.612 ·104 3.592 1.867 1.758 0.585

Just as in Figs. 1 and 2, z= 1.8/σ , β = 0.875/ε, and 	ρ= 10−2/σ 3. We use the notation fx
for f (Qmin, x/σ

3) and define Fyx ≡fy/fx .

Table III. �Q Dependence of the Final Results for a Hard-Core Yukawa

System

	Q
∣∣∞ σ Qmin σ f0.2 f0.2Qmin σ F 0.3

0.2 F 0.4
0.2 F 0.5

0.2

0.003 3.131 ·10−5 1.167 ·105 3.652 1.865 1.768 0.625
0.004 1.004 ·10−2 3.638 ·102 3.653 1.865 1.768 0.625
0.005 5.014 ·10−5 7.285 ·104 3.652 1.865 1.768 0.625
0.010 1.004 ·10−4 3.637 ·104 3.653 1.865 1.768 0.625

The parameters and notation coincide with those of Table II, except for 	ρ =
5 ·10−4/σ 3.
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Table IV. �ρ Dependence of the Form of the Final Results for a

Hard-Core Yukawa System at Varying �Q

	Q
∣∣∞ σ G0.2 G0.3 G0.4 G0.5

0.003 1.011 1.013 1.018 1.072
0.004 1.017 1.016 1.022 1.087
0.005 1.017 1.016 1.022 1.086
0.010 1.017 1.016 1.022 1.086

The parameters coincide with those of Table II and III. Perusing the nota-
tion introduced there, Gx is fx Qmin σ as evaluated for 	ρ = 5 · 10−4/σ 3

divided by the same quantity for 	ρ=10−2/σ 3.

small grid dependence stemming from the local truncation error of the dis-
cretization, exactly as for the HCY system. Still, the assumption of a gen-
uinely smooth solution is certainly compatible with the numerics, if only
marginally so in the face of the most prominent feature of the evolution
of f , viz., episodes of much more rapid variation than mere proportion-
ality to 1/Q.

Assuming the PDE to turn stiff for large f instead, and furthermore
Q	Q to exceed Q	ρ for the present system, there is a Q range Q	ρ <

Q<Q	Q where FDEs are used with inappropriately large step sizes 	Q
while oscillations in ρ are not yet suppressed. For these cutoffs, the sta-
bilization wrought by the mechanism analyzed in Section III of part I(1)

is not effective yet, and there is no reason for f to be convex from below
throughout the density range ρ1<ρ <ρ2. On the other hand, the overall
profile of f is expected to resemble Fig. 1 of part I(1), and seff = 0 once
more suggests a general growth proportional to 1/Q. The sign of ∂2f/∂ρ2

is thus unconstrained, and its modulus increases in unison with f , i.e.,
in proportion to 1/Q. As d00/d02 is of order O(1), however, the O(1)
growth of ∂2f/∂ρ2 may well be sufficient to destabilize the growth at some
Q ∈ (Q	ρ,Q	Q), prompting much more rapid variation of f as a func-
tion of Q. Of course, these near-discontinuities of f will occur at differ-
ent cutoffs for different densities, most often close to ρ1 and ρ2 where
the Q	x are smallest, and neighboring densities will experience them at
roughly the same cutoff. Furthermore, in principle the jumps should lead
to both increases and decreases in f , depending on the sign of ∂2f/∂ρ2

at slightly larger Q. Considering the numerics, however, a large change in
f is almost certain to bring the calculation to an end, and all the fail-
ure modes discussed in Section 3.1 are relevant for Qmin. A comparatively
mild increase of f , on the other hand, may relax the relative curvature
of f to the point of allowing the solution to enter once more an epi-
sode of near-stability characterized by growth in approximate proportion
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to 1/Q. As for an incorporation of the core condition, in accordance with
Section 3.1 the attendant introduction of additional degrees of freedom is
likely to exacerbate the risk of triggering such a jump in f , cf. Section 5. –
To understand the grid dependence of the numerics under the assumption
of stiffness, recall that Qmin itself is the location of a failed jump in f .
As smoothing in Q is the driving force behind the computational process,
Qmin must be quite sensitive to 	Q, but there is no reason for Qmin to be
monotonous in 	Q. The density grid, on the other hand, is still adequate
for the elliptic boundary value problem in ρ at constant Q. If the numer-
ical process were stable, there should thus be no appreciable dependence
of the results on 	ρ at all. In the absence of the stabilization wrought
by smoothing in ρ, however, even the small differences seen upon varia-
tion of 	ρ must be expected to shift the episodes of rapid evolution to
slightly different cutoffs in an unsystematic way. By the same token, the
	ρ dependence of the final form of f should be small, and different 	Q
should leave it unaltered as long as the number and the approximate posi-
tions of the jumps do not change. As those are least frequent close to the
maximum of f , its form is expected to be most stable in the central part
of the density interval of large f .

Again, these predictions compare favorably with the numerical results
for a SW potential of range λ=3 obtained on the same discretization grids
as the HCY data of Section 3.2. The most prominent feature, barely com-
patible with genuine smoothness, viz., near-discontinuities of f can actu-
ally be found in the numerical data underlying Tables V and VI at the
locations marked with arrows in Fig. 3; indeed, several of them can be

Fig. 3. f as a function of Q for various densities inside the binodal. The data have been
obtained for a SW potential with λ= 3 and at a temperature of β = 0.115/ε; otherwise, the
remarks of Fig. 2 apply. Arrows mark several of the near-discontinuities discussed in Sec-
tion 3.3.
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Table V. �Q Dependence of the Final Results for a SW System

	Q
∣∣∞ σ Qmin σ f0.15 F 0.25

0.15 F 0.35
0.25 F 0.45

0.35

0.003 4.181 ·10−4 −1.415 ·105 2.379 1.635 0.392
0.004 3.198 ·10−4 3.597 ·104 1.589 0.965 0.523
0.005 3.318 ·10−4 3.465 ·104 1.589 0.965 0.523
0.010 3.576 ·10−4 3.225 ·104 1.589 0.965 0.523

Just as in Fig. 3 λ=3, β=0.115/ε, and 	ρ=10−2/σ 3. The Notation is the Same as in
Table II.

seen clearly even on the logarithmic scale of the graph. All the other con-
sequences of stiffness with Q	Q>Q	ρ are also in agreement with the data
of Tables V and VI: In particular, a pronounced 	Q dependence of Qmin
is accompanied by only a very modest effect as 	ρ is varied, even though
the relative change in 	ρ is much larger than that in 	Q. Excluding the
pathological data with negative f (v. i.), the final forms of f are mostly
	Q independent, and the forms obtained on the two density grids differ
but slightly. Only the isotherm with 	Q

∣∣∞ =0.010/σ in Tab. VI presents a
somewhat different shape than those at smaller 	Q

∣∣∞. The differences in
the numbers given under the heading Fyx are, however, still in accordance
with the stiff scenario as discrepancies appear only close to the edge of
the density range of large f . As for the first entry of Table V (	Q

∣∣∞ =
0.003/σ ), negative f corresponds to exceedingly small values of ε≡ ε̄+1∼
10−27. This is found to be the result of a downward jump from f ∼+104

(ε∼105000) at only slightly higher cutoff where the form of f again corre-
sponds to that of the other isotherms. Clearly, even a minor perturbation
of the numerical process might easily have led to negative ε and hence to a
numerical exception; in this case our implementation would have discarded
the last step, and the final results would once more conform with those of
the remainder of Table V.

Let us shortly return once more to the most salient feature of the
numerical solution, viz., its near-discontinuities. Disregarding the analyt-
ical considerations of part I(1) it might be tempting to imagine that,
for T < Tc, the PDE generates a shock front approximately symmetri-
cally moving outward towards the densities ρv and ρl of the coexisting
phases as Q approaches zero. In this view of the numerical process the
jumps occur when the shock reaches the corresponding density. Such
an interpretation is not consistent with the data. According to Fig. 3,
the near-discontinuities of f occur repeatedly at the same density (most
conspicuously for ρ=0.1/σ 3), and rapid change at one density is generally
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Table VI. �Q Dependence of the Final Results for a SW System

	Q
∣∣∞ σ Qmin σ f0.15 F 0.25

0.15 F 0.35
0.25 F 0.45

0.35

0.003 4.206 ·10−4 2.812 ·104 1.584 0.974 0.547
0.004 3.302 ·10−4 3.589 ·104 1.584 0.974 0.547
0.005 3.318 ·10−4 3.551 ·104 1.584 0.974 0.547
0.010 3.685 ·10−4 3.178 ·104 1.589 0.974 0.545

The parameters and notation coincide with those of Table V, except for
	ρ=5 ·10−4/σ 3.

accompanied by similar behavior at other densities. Neither of these obser-
vations is compatible with the idea of a moving shock front, nor is there
any reason why the binodal should be linked to a shock front in SWs but
not in the HCY fluid, cf. Section 3.2.

3.4. Assertion of Stiffness

Summarizing the numerical evidence presented so far we find that of
the three scenarios found in part I(1) only the possibility of a merely loga-
rithmic singularity of f can be ruled out with certainty. We are then faced
with the two alternatives of genuine smoothness of the PDE on the one
hand, and effective smoothness as a result of an FD approximation to a
stiff PDE on the other hand. As shown in the preceding subsections 3.2
and 3.3, neither of them is in direct contradiction with the numerical data.

The crucial difference is their respective specificity and testability: The
genuinely smooth scenario does not make any predictions beyond the
smallness of the discretization grid dependence of the numerical results,
nor does it offer any of the detailed understanding of the computational
process that is necessary for accurate and reliable interpretation of the FD
results. By way of contrast, stiffness of the PDE in part of its domain pro-
vides a consistent framework for the interpretation of the numerics and
furthermore entails a number of concrete and numerically testable conse-
quences, all of which are in excellent agreement with our data once the
correct ordering of the Q	x has been chosen. In combination with the
analytical considerations of part I(1) and our earlier statements regarding
the importance of the formulation of the HRT PDE employed, the speci-
ficity and great number of these predictions provide ample, although nec-
essarily indirect evidence in favor of the stiff scenario.

From this point on we will therefore take it for granted that the
HRT PDE does, indeed, turn stiff in part of its domain for subcritical
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temperatures. On this basis, we now aim to further enhance our under-
standing of the HRT numerics, shedding some light on the location of Q	Q

(Section 4), extending our findings in the asymptotic region to intermediate
Q (Section 5), and finally clarifying the outstanding numerical properties of
the HCY potential vis-à-vis other physical systems (Section 6).

4. THE ONSET OF SMOOTHING IN Q

Considering the great importance of the relative order of the Q	x for
the numerical process, it is natural to inquire into their typical values. As
the exponents r and s are non-zero by assumption, these cutoffs may only
weakly depend on the discretization grid and so are largely determined
by the perturbational part of the potential alone. Whereas the onset of
smoothing in ρ eludes simple reasoning so far, some heuristic arguments
point to a simple connection between the likelihood of finding Q	Q at
some cutoff and the form of the Fourier transform w̃(k).

Let us consider a thermodynamic state of diverging isothermal com-
pressibility at a cutoff that is low enough for smoothing in Q to have set
in at least partially, Q∼Q	Q. In view of the gradual transition between
the smoothing and non-smoothing regimes, the effective exponent seff may
not vanish exactly yet; nevertheless it seems safe to assume seff < 1. Of
course we expect ε̄	 f 	 1 so that reasoning based on the asymptotic
behavior for large ε̄ is applicable, and due to the monotonicity of the
exponential function the likelihood of finding Q	Q close to some cutoff
Q increases with the slope −∂f/∂Q of f . At the same time, for a hard-
sphere reference system Q	Q can only depend on the form of the Fourier
transform of the perturbational part of the interaction potential, i.e., on
ũ0 = φ̃/φ̃0 rather than on φ̃ itself. The temperature T = 1/kB β enters the
calculation only as a pre-factor to the interaction potential, viz., through
φ=−β w so that the normalization of φ̃ only fixes an energy or tempera-
ture scale.

With this in mind we define an auxiliary quantity ψ(Q,ρ), corre-
sponding to φ̃0 +γ (Q)0 in the notation of our earlier work on HRT,(1,9,10,12)

through

K̃+ψ ũ0 =− φ̃
ε̄
. (5)

Solving this relation for ψ and differentiating with respect to Q we obtain

∂ψ

∂Q
=−φ̃0

(
∂

∂Q

1
ε̄

+ ∂

∂Q

K̃
φ̃

)
, (6)
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which is valid at all cutoffs except close to the zeros Qφ̃,i of φ̃ and ũ0
where Eq. (5) cannot be inverted. – An alternative expression for ∂ψ/∂Q
can be obtained from the PDE (1) and the compressibility sum rule.
Following Section 2.4.1 of ref. 10, for density independent potential we
easily find

∂ψ

∂Q
= − Q2

4π2

∂2

∂ρ2
ln ε

= Q2

4π2

(
−ũ2

0
∂2f

∂ρ2
+ φ̃ ∂2

∂ρ2

1

K̃

)
. (7)

Equating these two expressions for ∂ψ/∂Q, solving for ∂2f/∂ρ2, and
inserting the result into the PDE (1) yields

∂f

∂Q
=d00 + d02 4π2

Q2 ũ2
0

(
φ̃0

∂

∂Q

1
ε̄

+ ∂

∂Q

K̃
ũ0

)
+ d02 φ̃0

ũ0

∂2

∂ρ2

1

K̃ (8)

for Q away from the Qφ̃,i . Both d00 and d02 are negative in the case under
consideration.(1)

Of the expressions appearing on the right hand side of Eq. (8) the
one involving the Q derivative of 1/ε̄ is of order O(ε̄seff −1) and so can
be neglected if seff < 1 as assumed. As we are looking for an effect trig-
gered by the form of φ̃ alone we do not have to consider the derivatives
of the properties of the hard sphere reference system encoded in K̃ either.
It is then the term involving the Q derivative of ũ0 that is of interest. The
ideal gas contribution −1/ρ to K̃ ensures positive d02 K̃ so that this term
is the product of ∂ũ0/∂Q and manifestly positive factors. Now assume that
Q	Q is less than the position of the first minimum of ũ0 so that only the
monotonous growth of ũ0 towards its global maximum at Q= 0 remains
to be covered by the solution of the PDE. Clearly, as the calculation pro-
ceeds in the negative Q direction, the steeper this rise of ũ0, the more
the ∂ũ0/∂Q term counteracts the growth of f , thereby effectively further
delaying the onset of smoothing in Q. Most likely, Q	Q will thus be found
at cutoffs so low that ũ0 already levels off towards its limiting value of
unity.

For the two potentials considered earlier, viz., SWs and the HCY sys-
tem with z=1.8/σ , Fig. 4 shows that ũ0 levels off when Q (or λQ, in the
case of SWs) is no more than about 10−1/σ , which is well compatible with
the estimate of Section 3.2. In addition, Figs. 2 and 3 demonstrate that
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Fig. 4. ũ0 as a function of Q for SW and HCY potentials with the parameters indicated.
If, contrary to Eq. (2), the Yukawa form is retained even inside the core, ũ0(Q) is given
by z2/(z2 + Q2). As far as the SW potential is concerned, λ and Q enter ũ0 only in the
combination λQ so that a variation of the potential range only introduces a linear rescaling
of the Q dependence of the function. We have checked that the graph remains qualitatively
unchanged for different parameter settings. The first minimum of ũ0 is −0.02 for the default
HCY potential, −0.09 for the HCY potential with ε0 = 0, and slightly above −0.09 for the
SW potential.

the transition to the regime where f mostly grows like 1/Q, correspond-
ing to vanishing seff , occurs at similar values of the cutoff. All in all, our
arguments, heuristic as they are, do indeed allow us to estimate Q	Q in a
satisfactory way. As for smoothing in ρ, on the other hand, actual numeri-
cal solution of the PDE currently is the only way of locating and studying
Q	ρ(T ,ρ).

5. BEYOND ASYMPTOTICS

On the basis of the results presented so far one might expect numer-
ical difficulties to first surface close to Q	x , i.e., around Q∼ 10−1/σ for
the potentials considered earlier. However, the monitoring variant of our
code(9–11) that must be credited with first highlighting the stiffness of the
equations clearly signals the inadequacy of the discretization grid already
at much higher cutoff, viz., typically for 5<Qσ <10. Indeed, the asymp-
totic region of large ε̄ can never even be reached without renouncing con-
trol of the local truncation error in solving the FDEs, cf. Section III E of
ref. 9.

In combination with the observed patterns of the evolution of f
at intermediate and small Q illustrated in Figs. 2, 3 and 5, our experi-
ence with the numerics of HRT leads us to propose that stiffness is not
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Fig. 5. f (Q,ρ) for intermediate cutoff as a logarithmic contour plot. The data has been
obtained for SWs with λ=3 at inverse temperature β=1/kB T =0.115/ε. Both the approach
to the low-density boundary condition of vanishing f at densities below 0.01/σ 3 and the
final build-up of infinite compressibility at cutoffs below 10−1/σ have been excluded from the
graph.

confined to that part of D where the final build-up of infinite κT takes
place. Indeed, Fig. 5 shows that there are several regions of large f at
higher cutoff, some of which may give rise to transient stiffness of the
PDE. Even though the analysis of part I(1) does not apply directly – f

being bounded, asymptotic reasoning is not guaranteed to be valid, nor
does large f imply large ε̄ any longer due to the smallness of ũ2

0 –, from
the expressions given in part I(1) we can still deduce that d02 is negative
and appreciable for all Q in the relevant cutoff range except very close to
the Qφ̃,i , and that d00 is likely to be rather large in modulus for f 	 1
due to the terms linear in f . Depending on the sign of d00, large f may
well prompt rapid further growth when Q proceeds to smaller values. Just
as in Section 3.3, such a rapid growth of f almost certainly induces an
accompanying growth of |∂2f/∂ρ2| on the grid, and any oscillations of the
density curvature will carry over to ∂f/∂Q. Qualitatively the situation is
then quite similar to that in the asymptotic region, and it seems reasonable
to see this transient stiffness at intermediate cutoff as preventing compu-
tations insisting on local convergence on a dynamically adjusted discreti-
zation mesh to ever proceed to Q∼Q	x .

Without the backing of more formal arguments much of the above
line of thought may seem insubstantial. There are, however, a number
of numerical effects that provide at least indirect evidence for the point
of view just laid out. Among those already discussed in our earlier
work on HRT, the plummeting step sizes observed when determining the
discretization grid from the local curvature of appropriate components of
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the solution vector(9,11) are the most direct sign of stiffness at intermedi-
ate Q. Further support comes from our study of SWs of varying range.(12)

There the peculiar shifts in the critical temperature whenever λ is close to
a simple fraction have been linked to the modulation of ε̄ by the interfer-
ence of c̃ref

2 and φ̃; and considering our remarks on the effect of extend-
ing the solution vector (Section 3.1) it is significant that the critical point
is accessible in a wider λ range when coupling the PDE to a smaller
number of expansion terms for taking into account the core condition,
cf. Section IV E of ref. 12 and appendix E of ref. 10. Transient stiffness
also explains why the lowest temperature attainable numerically, denoted
1/kB βmax,# in refs. 10 and 12, may well be higher than Tc even though
stiffness in the asymptotic region is a problem only for T � Tc, and that
the isotherms show no sign of phase separation for β < βmax,# <βc, the
critical temperature being known independently from related computations
or by other methods. – There are also some more intricate issues related
to the interplay of the Qφ̃,i (where d00 vanishes as φ̃2) with the boundaries
of the cutoff ranges where the step sizes 	Q are inappropriate, as well as
to the ρ dependence of the onset of smoothing in the presence of a local
density grid refinement. Discussion of these subtle effects and their numer-
ical manifestations requires a detailed presentation of appropriate methods
of data analysis on non-uniform high-resolution density grids and so falls
outside the scope of the present report.

6. HARD-CORE YUKAWA VERSUS OTHER POTENTIALS

In conjunction with our earlier analyses of the issues surrounding ini-
tial and high density boundary conditions, implementation of the core
condition, and the peculiarities of discontinuous potentials,(9,10,12) asser-
tion of stiffness at low and intermediate Q below a certain temperature
provides us with a detailed understanding of the numerical process of solv-
ing the HRT PDE throughout D and has proved invaluable in interpreting
numerical raw data. We close this short series of reports with a generally
relevant sample of the kind of insight that can be gained on this basis,
viz., a clarification of the unusually benign computational properties of
the HCY potential.

Throughout our numerical work we consistently found that HCY flu-
ids of moderate inverse screening length like, e. g., the one with z=1.8/σ
repeatedly used here and in ref. 9 exhibit the symptoms of stiffness only
in a rather mild form, both for Q→ 0 where this follows from the low
value of Q	Q, and at intermediate cutoff. This can be understood by
noting, firstly, that the temperature enters the calculation only through
φ̃=−β w, the global normalization of which is accessible only in the limit
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Q→ 0. At any cutoff Q, the variation of φ̃(k) for k >Q is then the only
measure of the temperature available to the PDE; at the same time, for
every one of the patches of large f , stiffness arises only below some char-
acteristic temperature, coinciding with the critical one for the final build-
up of infinite κT at Q=0. Secondly, recalling that ũ0 ∝ φ̃, a look at Fig. 4
and the numbers quoted in its caption shows that the local extrema at
Q> 0 of φ̃hcy with the default choice of ε0 = ε are substantially smaller
in modulus than those for SWs; only for much higher z do the extrema
of ũhcy

0 approach the SW values which they reach in the infinite-z limit.
It is easily checked that these observations also hold in comparison with
other short-ranged potentials like, e.g., the Lennard-Jones one: the main
difference relative to SWs concerns the phase rather than the amplitude of
the oscillations. Taken together, the smallness of the local extrema of φ̃hcy

and the rôle the temperature plays readily explain the especially attractive
numerical properties of this potential. For Q→0, the slope of ũ0 relative
to the scale set by the oscillations at higher Q is particularly steep, as per
Section 3.2 leading to especially small Q	Q and suppression of near-dis-
continuities of f . At intermediate cutoff, on the other hand, the small-
ness of the local extrema vis-à-vis the global maximum at Q= 0 renders
the numerics there similar to what would be seen at much higher T/Tc in
other systems, and transient stiffness poses less of a problem. At the same
time, the z-dependence of ũhcy

0 immediately explains the deteriorating accu-
racy of the results for very short HCY screening length.(13)

Support for this view comes from the numerical properties following
from a different choice of w(r) inside the hard core, which affects the Fou-
rier transform φ̃ and hence f and all other properties of the Q system at
all cutoffs except in the limits Q→ ∞ and Q→ 0. (Independence of the
final results from the precise choice of w is confirmed in a rather satis-
factory way in some preliminary calculations on the Girifalco description
of fullerenes.(14)) The simplest such modification of w consists in a non-
default setting of ε0 in Eq. (2), exemplified by the dot-dashed curve in
Fig. 4 (ε0 = 0). Just as in ref. 12, even a modest discontinuity of w(r) at
r=σ strongly affects the form of φ̃ and renders the local extrema similar
to those of the SW case; as expected, this is accompanied by numerical
difficulties at intermediate Q similar to those discussed for SWs in refs. 9
and 10. In contrast, extension of the Yukawa form all the way to the ori-
gin – hardly unproblematic as it entails diverging direct correlation func-
tion at r=0 and invalidates the expansion method of taking into account
the core condition(6) – yields the non-oscillatory form ũ0(Q)=z2/(z2 +Q2)

(dotted curve in Fig. 4) and prevents numerical solution of the FDEs even
at high temperatures. The exceptionally attractive numerical properties of
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the potential (2) are therefore merely the result of a particular choice,
shared with the original implementation, of w(r) inside the core and so
no genuine trait of the HCY fluid.

This finding nevertheless does not invalidate the special standing of
the HCY system that must be taken into account in interpreting a com-
parison with other thermodynamically consistent liquid state theories on
the basis of HCY results for 1.8/σ � z� 9/σ .(13) On the other hand, the
above considerations also point to the possibility of tuning the compu-
tational properties of some given potential by optimizing w(r) inside the
core to reduce the local extrema at intermediate cutoff, an avenue largely
unexplored to date the merit of which we are currently in no position to
assess.

The preceding clarification regarding the HCY system vis-à-vis other
potentials is but one application of the detailed understanding of the HRT
numerics presented here as well as in our earlier HRT related work. Other
aspects of the numerics where this understanding has proved invaluable
in interpreting the computational process and the results it yields concern
the limits of the resolution in ρ when using extremely fine density grids,
the interplay between non-uniform discretization grids and the location of
the binodal, the local behavior of the solution close to the zeros Qφ̃,i of
φ̃, or questions of data analysis. All-in-all, we feel that we have amassed
a considerable amount of numerical experience and arrived at a rather
detailed self-consistent perception of the computational process through-
out all of D even below the critical temperature. Given the precarious
nature of the HRT numerics and the not altogether unproblematic relation
between the PDE and its FD approximation such an understanding is of
prime importance if systematic mistakes are not to be introduced into the
results unknowingly.
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